
Information Processing and Management 60 (2023) 103471

A
0

T
r
Q
W
a

b

T

A

K
P
I
D
B

1

r
c
a
i
r
a

x

h
R

Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier.com/locate/ipm

urning backdoors for efficient privacy protection against image
etrieval violations
iang Liu a, Tongqing Zhou a, Zhiping Cai a,∗, Yuan Yuan a,∗, Ming Xu a, Jiaohua Qin b,
entao Ma a

College of Computer, National University of Defense Technology, Changsha, Hunan, 410073, China
College of Computer Science and Information Technology, Central South University of Forestry &
echnology, Changsha, Hunan, 410000, China

R T I C L E I N F O

eywords:
rivacy protection
mage retrieval
eep metric learning
ackdoor learning

A B S T R A C T

Image retrieval, empowered by deep metric learning, is undoubtedly a building block in
today’s media-sharing practices, but it also poses a severe risk of digging user privacy via
retrieval. State-of-the-art countermeasures are built on adversarial learning, which would spoil
the image-sharing mood with significant latency. To relieve the cumbersome experience of
such data-centric approaches, we propose a plug-and-play privacy-preserving design (MIP)
against image retrieval violations by exploring the rule-based triggering characteristics of model
backdoors. The basic idea is to inject a privacy-preserving backdoor into the global retrieval
model via backdoor learning, thus preventing shared images with such triggers from being
searched. At its core, two types of triplet loss functions are invented, namely, imperceptible
loss for normal retrieval performance and privacy-sensitive loss for disturbing retrieval with
deliberate privacy backdoor injection. Extensive experiments on four widely used, realistic
datasets showcase that MIP provides an outstanding privacy-preserving (backdoor) success rate,
e.g., the poisoned retrieval mAP could be reduced to 0.33% (98.12%↓) in CUB-200, 0.04%
(99.84%↓) in In-Shop, 0.64% (99.59%↓) in CARS196 and 0.01% (99.98%↓) in SOP, respectively,
while maintaining similar normal retrieval performance (average 0.02%↓); provides a superior
efficiency (7 orders of latency reduction) than the baselines. Besides, as a model-centric solution,
MIP yields imperceptible visual changes and is demonstrated to resist potential black-box
defenses (e.g., image filtering) and white-box defenses (e.g., fine-pruning). The code and data
will be made available at https://github.com/lqsunshine/MIP.

. Introduction

Today’s proliferation of large-scale image and video collections from various terminals has led to the rapid development of deep
etrieval systems (Wang et al., 2022). Powered by millions of citizens’ data from social platforms, some commercial search engines
an build personalized retrieval models for target searching tasks (Jiang et al., 2020). Yet, misuse of these advanced techniques is
lso numerous and potentially disastrous (Chen, Reznichenko, Francis, & Gehrke, 2012). As shown in Fig. 1, with a point of interest
mage as a query, an adversary can easily retrieve similar images containing visuals of individuals that have been around. Such
esourceful visuals can be exploited in bewildering ways to extract private information such as family members, locations, contexts,
nd personal interests for commercial promotions (Reznichenko & Francis, 2014) or even spear phishing (Han & Shen, 2016).
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Fig. 1. A general privacy violation process using image retrieval service. Wherein, an adversary performs malicious searches with specific locations or keywords
to extract sensitive visuals of users. Existing solutions involve prohibitively high latency and corrupted images, which motivated this work to develop a more
efficient, privacy-preserving, model-centric technique.

Unfortunately, existing defenses rely on data-centric solutions that involve significant visual adjustments and infeasible interac-
tion processes. On the one hand, distortion-based methods (Xia et al., 2016) actively blur sensitive areas in user images before sharing
them to platforms. Although preventing malicious searches from disclosing sensitive information, excessive visual modification
degrades image quality, ruining the sharing tenet in social scenarios. On the other hand, adversarial-based methods (Xiao, Wang,
& Gao, 2020; Zhang, Huang, & Xu, 2021) iteratively add small perturbations to images and calibrate the perturbations according
to the retrieval feedback of the server. Such adversarial approaches (including differential privacy method (Shen, Li, Wu, & Zhang,
2023; Tran, Fioretto, Van Hentenryck, & Yao, 2021)) could eventually lead to a high interference success rate with strong privacy
protection. Yet, it requires multiple rounds of computation and user-cloud interaction, whose high latency makes it infeasible on
mainstream mobile devices (e.g., XIAOMI 10), as revealed with our observations in Section 2.3.1. Therefore, there still lacks an
efficient privacy defense for efficient mitigation of malicious searches.

For efficiency, we point out that, instead of laboriously finding each image a proper perturbation/cloak, one can enable the
retrieval model with general privacy-preserving wisdom. That is, if a retrieval model remembers/learns the unique symbol of
private images, it could bypass such images when they are being queried or in the retrieval results. Technically, backdoor
attacks, which train the model on poisoned images with misleading labels, provide a natural solution for retrieval models to act in
an expected way with specific inputs (Li, Jiang, Li, & Xia, 2022). In fact, there are many efforts to plant backdoors on AI models,
either for vulnerabilities by adversaries (Guo, Goldstein, Hannun, & Van Der Maaten, 2020) or for good by model owners (Wang &
Kerschbaum, 2021), as in our cases. However, most backdoors are designed for classification models with explicit categories (e.g., (Li
et al., 2021)), making them ill-suited for real-world retrieval systems that build on continuous feature space (i.e., based on Deep
Metric Learning (DML) (Roth et al., 2020)). In essence, samples in DML are distributed in tons of small groups, on which traditional
backdoors cannot impose a clear boundary between clean samples and their poisoned samples, as we will evaluate in Section 2.3.2.

According to the above analysis, this work is devoted to designing the first backdoor-based privacy defense, named MIP, against
malicious image searches on retrieval systems. To work along with general image sharing and retrieval loop, MIP should be: (1)
sufficiently sensitive to privacy that facilitates low accuracy when being queried with a poisoned image (i.e., an image marked
with an invisible trigger); and (2) effectively imperceptible that maintains the retrieval performance of normal queries on normal
images in the database. For these, we first use a pre-trained encoder network (i.e., StegaStamp (Tancik, Mildenhall, & Ng, 2020)) to
generate an invisible trigger, preventing the adversary from noticing private content. Then, we conduct backdoor learning against
the deep retrieval model in the form of multi-task learning, namely, simultaneously minimizing imperceptible loss and maximizing a
novel privacy-sensitive loss among clean/anchor-poisoned and poisoned-poisoned samples. Realizing that users and service providers
focus on different aspects when launching such a defense, we derive two alternative optimization objectives of privacy-first and
retrieval performance-first, respectively.

Our contributions can be summarized as follows:

• We reveal the limitations of both existing data-centric countermeasures and naive backdoor designs against malicious searches
on retrieval systems. As a remedy, we present the MIP framework with ‘plug-and-play’ protection, i.e., avoiding being searched
by simply adding a dedicated trigger on one’s private image. It is well-suited to common mobile devices.

• We propose the first backdoor learning algorithm in DML-based image retrieval. To build benign backdoors, we design
dedicated privacy-sensitive loss to enlarge feature distances between normal queries and similar poisoned images, poisoned
queries, and similar normal images, as well as poisoned queries and similar poisoned images, tuning a retrieval model to
prevent privacy-marked user-shared images from being retrieved.

• Extensive experiments are conducted on four datasets. It demonstrates MIP’s high feasibility by yielding superior privacy-
preserving capability (low retrieval accuracy for poisoned images) and better efficiency with a slight impact on normal retrieval
2
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tasks compared with the baselines. Besides, MIP provides remarkable stealthiness and robustness against possible backdoor
defenses.

To comprehensively understand our work, we organize the remainder of this paper as follows. Section 2 provides a related works
eview and research motivation. In Section 3, we present our threat model and feasibility analysis. We then give an overview and
etailed design of our proposed MIP system in Section 4. The evaluation and corresponding experiment analysis of the MIP system
re presented in Section 5. Section 6 introduces the discussions about our work and this paper will be concluded in Section 7.

. Related work and motivation

In this section, we first review related work covering two groups: DML-based image retrieval and backdoor learning. Then, we
iscuss the motivation for the study by examining the limitations of data-centric privacy-preserving solutions and naive backdoor
esign and state our research objectives.

.1. DML-based image retrieval

DML is the mainstream technical core for image retrieval (Amato, Carrara, Falchi, Gennaro, & Vadicamo, 2020; Ma et al., 2023;
andey, Khanna, & Yokota, 2016; Qin et al., 2020) and searching tasks (Schroff, Kalenichenko, & Philbin, 2015). The goal of DML
ethods is to embed images into a common space and, subsequently, learn the discriminative features based on a defined distance
etric function. Given a query image, the retrieval model computes the distance of embedded feature vectors between it and all the

eference images gathered in the database and returns the nearest image(s) as the retrieval result. Nowadays, most DML approaches
ainly focus on updating loss functions for different optimization targets, such as triplet loss (Wang et al., 2014), lifted structure

osses (Oh Song, Xiang, Jegelka, & Savarese, 2016), and margin loss (Wu, Manmatha, Smola, & Krahenbuhl, 2017), and developing
ampling strategies to reduce computation complexity, such as semi-hard (Schroff et al., 2015) and distance-weighted (Wu et al.,
017). More details can be found in survey (Roth et al., 2020).

.2. Backdoor learning

Backdoor learning (attack) aims to inject dedicated backdoors in DNN models during training so that the backdoored/poisoned
odels perform well on clean samples but poorly on samples with pre-designed triggers (i.e., poisoned samples). In image

lassification tasks, Gu, Liu, Dolan-Gavitt, and Garg (2019) first revealed such an intriguing property and proposed a method
dubbed as BadNets) to inject a backdoor by poisoning part of training samples and replacing the corresponding labels with a
ertain target label. Then, Chen, Liu, Li, Lu, and Song (2017) proposed the first invisible backdoor (dubbed Blended) to increase

the visual stealthiness of triggers further, making the poisoned images indistinguishable from human eyes. Subsequently, Liu, Ma,
Bailey, and Lu (2020) leverages filters to simulate ‘reflection’ phenomena in nature and proposes the refool approach to inject trigger
eatures. Unlike existing methods based on such a sample-agnostic trigger design, Cheng, Liu, Ma, and Zhang (2021) introduces a
AN-based style transfer network to craft poisoned samples. Recently, Li et al. (2021) proposed an invisible sample-specific backdoor
eneration approach, which utilizes the pre-trained encoder network of image steganography to obtain powerful invisible triggers.
dditionally, backdoor attacks are not exclusive to computer vision tasks but can also affect other essential fields, including speech
ecognition (Liu, Zhou, Cai, & Tang, 2022), natural language processing (Chen et al., 2021), and federated learning (Zeng, Zhou,
u, & Cai, 2022). Backdoors can even be beneficial when appropriately utilized, such as safeguarding model copyrights (Wang &
erschbaum, 2021). To learn more about this, please refer to the survey conducted by Li et al. (2022).

.3. Motivations

.3.1. Limitations of data-centric solutions
Efforts to mitigate malicious searches currently focus on data-centric solutions, which fall into two categories: distortion-based

nd adversarial-based methods. The former (Xia et al., 2016) inevitably produces low-quality images that go against the intention
f sharing the high-quality image. The latter (Xiao et al., 2020; Zhang et al., 2021) requires users to dynamically compute proper
erturbations and add them to their images to prevent them from being retrieved as search results. However, generating adversarial
mages requires frequent interactions and computations, which can cause significant computation and latency for both users and
he retrieval service provider. Taking, for example, the 350 million images posted by Facebook every day, the frequent interactions
n which perturbation computing relies would cause significant side effects (e.g., huge latency and additional computational cost)
or clients and servers.

To observe the infeasibility of using the adversarial solution, we conduct a simple test with real-world hardware, where we
ssume a user has the required knowledge about the target model and the service provider is also willing to help. Our evaluation
esults, presented in Table 1, indicate that an adversarial solution (HDM) takes about 4 s with 100 iterations to craft a single image
n the Nvidia GTX3080TI GPU. However, HDM fails to respond on the XIAOMI 10 smartphone due to memory exhaustion, mainly
s GPU computing power on mobile is currently only supported for inference on compressed models. In contrast, the backdoor-based
pproach, which we will discuss shortly, runs fast on PCs and exhibits high-speed performance on smartphones, taking at most 1 s.
his inspired us to design an efficient privacy defense mechanism by exploring a plug-and-play form based on calibrating
3

he models.
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Table 1
Comparison of computation time for crafting one image using Backdoor-based and adversarial-Based methods (HDM (Xiao et al.,
2020)) on two different types of devices.

Devices
Methods Computation time (ms)

BadNets Blended StegaStamp (Ours) HDM
PC (GTX3080TI) 50 52 605 4344
XIAOMI 10 163 180 1003 ×

Fig. 2. Using t-SNE visualization with inferences from clean and backdoored DML models on image retrieval datasets. The leftmost image examples show the
trigger injection that we perform on clean samples (all experiments use the same trigger here). Obviously, the retrieval models backdoored by our methods,
namely PBL and CBL (shown in (c) and (d)) respectively, with detailed explanations provided in 4.5, facilitate feature representation that can clearly separate
the poisoned samples from the clean ones.

2.3.2. Limitations of naive backdoor design
Existing classical backdoor methods (named labeled-based methods) (Gu et al., 2019) are designed to train a few boundaries for

relatively large categories, ill-suited to general retrieval models that build on sparse (usually tens of thousands) distributions with
very few similar samples for each image. Specifically, the limitations of classification-based backdoor methods are potentially due
to their ability only to mislead the output of individual instances of the model. Obviously, it is not sufficient to corrupt the correct
retrieval results because retrieval evaluation is typically performed on a ranked list. Therefore, the corruption must be done in a
way that affects the ranking order of the entire list, which is a more challenging task.

To evaluate our analysis, we use a feature visualization technique to render the feature representation of clean and poisoned
images under the normal retrieval model, label-based model, and our models. As shown in Fig. 2, features of poisoned samples
mix with those of the clean samples under the clean model (i.e., DML-based retrieval). While their distances are enlarged with the
label-based backdoor, the boundary is still obscure for classifying inter-distance and inner-distance, especially when there are tons
of categories. Hence, it is crucial to develop a specialized backdoor learning algorithm for the DML-based retrieval model.

2.3.3. Our research objectives
Based on the key observations mentioned above, we explicitly state the research objectives of our work, considering both

application and technical perspectives.
The application research objectives. As we all know, the practical deployment of privacy protection systems depends on their

feasibility in real-world scenarios, which involves two significant aspects: (1) reasonable assumptions regarding participating entities
and (2) efficient and acceptable protection mechanisms. The former ensures the alignment of interests among all parties involved,
fostering the development of a privacy protection system. The latter focuses on the actual experience of the participants, ensuring
stable system operation. In light of these considerations, our work primarily focuses on enhancing the efficiency of privacy
protection based on a win-win assumption. Initially, we argue that existing countermeasures (Xiao et al., 2020; Zhang et al.,
2021), which solely prioritize user perspectives without considering the SP’s interests, are not practically achievable, even though
they align more with user privacy needs. Evidently, no SP would accept an ‘‘unwitting attack’’ as a means of privacy protection and
would actively work to prevent such attacks. Furthermore, the significant latency associated with existing methods hinders their
scalability in cases where SPs are willing to provide privacy protection. To tackle these challenges, our proposed plug-and-play MIP
approach offers a solution addressing the efficiency concerns associated with privacy protection.

The technical research objectives. As described in Sections 2.3.1 and 2.3.2, traditional backdoor methods, although widely used,
are not directly applicable to the domain of DML. Therefore, we recognize that the main focus of this paper is to devise effective
backdoor learning algorithms specifically tailored for DML-based retrieval models. To achieve this goal, we concentrate on
developing the privacy backdoor by designing dedicated privacy-sensitive losses. These losses are carefully crafted to ensure that
the injected backdoors have minimal impact on the model’s overall performance during normal retrieval tasks while effectively
disrupting the retrieval process when the privacy backdoor is triggered. Recognizing the diverse privacy requirements of different
entities, we take into account the variability in privacy needs and preferences. As a result, we provide two alternative optimization
objectives to facilitate backdoor learning, allowing for customizable privacy settings that align with the specific requirements
of different stakeholders. By addressing the challenges associated with backdoor learning in the DML domain and incorporating
privacy-sensitive losses and customizable optimization objectives, our work aims to enable effective privacy protection through the
integration of backdoors.
4
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3. Threat model and feasibility analysis

3.1. Threat model

Considering the problem of malicious searches, there are three types of entities with distinct roles and basic assumptions, which
an be described as follows.

• Users share their photos via social platforms from time to time. They would not like to become a victim of malicious searches
when some sensitive information in their images is searched out and disclosed. With MIP as a protection option, users would
poison the images they believe to be sensitive (i.e., adding an invisible trigger) before sharing them. For that, such pictures
with a dedicated privacy backdoor can then counteract privacy violations. Therefore, users who select the privacy option
expect the MIP to provide the most effective privacy protection possible. Note that, we do not make assumptions about the
computing capabilities of the user’s equipment, which are the contexts our design tries to adapt to.

• Service provider (SP) could be a social platform, simply a search engine, or its consortium (e.g., Google searches user information
via Twitter) that collects user images for maintaining an online community (Buffardi & Campbell, 2008). It is assumed to
be honesty will act according to privacy laws and regulations. Hence, it favors a countermeasure that can protect user-
sensitive images from being searched (discussed in Section 5.2), on the premise that normal retrieval should not be impacted.
Specifically, for-profit SPs expect the MIP to protect user privacy while maintaining the normal retrieval effect of the retrieval
model (i.e., a higher benign rate), similar to having no poisoning.

• Adversaries are unauthorized/malicious third parties (e.g., advertisers, estate agencies) who use the retrieval function of the SP
(e.g., image retrieval on Google) to dig user information (a.k.a., malicious searches). For example, advertisers use a hospital
image to find people who have taken photos and send drug promotions to them. Knowing that SPs use the backdoored
model to prevent malicious searches, an adversary would further take advanced techniques, such as backdoor defenses (Liu,
Dolan-Gavitt, & Garg, 2018), to attack the model and attain expected retrieval results (discussed in Section 5.3).

3.2. Feasibility analysis

Here, we conduct an in-depth analysis of the potential privacy risks posed by malicious searches and analyze the feasibility of
ur proposed backdoor countermeasure.

• Is the privacy risk realistic? Absolutely yes. As analyzed by existing countermeasure (Xiao et al., 2020), any social platforms with
image retrieval interfaces share the same risk of digging user privacy via retrieval. Especially with the increasing prevalence
of personalized services, such as people tagging and search functions on social media platforms like Facebook, and the closely
collaborative business models (e.g., the collaboration between search engines and social network sites), the need for suitable
technical countermeasures to mitigate these vulnerabilities has become more pressing than ever. It is crucial for researchers,
industry practitioners, and the public to work together to develop effective solutions to address these privacy risks and
safeguard users’ personal information.

• Why SP is honest? One major reason is that SP would face severe punishment when being sentenced to commit privacy
violations. For instance, Facebook was fined 650 million dollars for violating GDPR (Politou, Alepis, & Patsakis, 2018) through
its facial recognition search function (Sucharow, 2021). Moreover, privacy protection has become critical to Internet services,
including social platforms. By prioritizing privacy, SPs can not only comply with relevant laws and regulations but also
maintain active users, who have become more concerned about their online privacy in recent years. In turn, this helps to
build trust and loyalty among users, leading to increased revenue and a competitive advantage in the market. Therefore,
SPs are increasingly investing in privacy-preserving technologies and strategies to ensure that they can provide high-quality
services.

• Why use our MIP? In contrast to in-place access control and distortion-based approaches, MIP (SP) incentivizes user engagement
for self-protection and increased profitability. Specifically, simple control strategies may not work well along with advanced
search techniques (e.g., cache acceleration) due to their inflexible settings. As a de facto issue in Google and Facebook (Dong,
Zhang, Shah, Wang, & Yu, 2020), even if a user chooses to ‘hide’ or even ‘delete’ the individual image in the social network, the
search engine usually still has records on the relevant image from the cache pool, thereby compromising the user’s privacy.
In contrast, our work offers a reasonable solution to these types of problems by effectively mitigating malicious retrieval.
Furthermore, MIP does not generate frequent data interactions with the server, does not consume heavy computation on user
devices, and avoids malicious searches at a reasonable cost, which is believed to facilitate a win-win solution for both SPs and
users. In summary, MIP offers a promising approach to mitigating privacy risks associated with image retrieval services. Their
effectiveness and efficiency make them valuable to existing privacy protection solutions.

. Backdoor for retrieval privacy

In this section, we present the construction for MIP by going through the problem formulation, an overview of the MIP framework,
nd design details, respectively.
5
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Fig. 3. An overview of the MIP framework, roughly divided into offline construction and online protection.

4.1. Problem formulation

Given two samples 𝑥𝑖 and 𝑥𝑗 , DML-based image retrieval learns a DNN representation function 𝑓 that measures sample similarity
as 𝑑(𝑓 (𝑥𝑖), 𝑓 (𝑥𝑗 )) ∶= 𝑑(𝑥𝑖, 𝑥𝑗 , 𝜃), where 𝑑(., .) is a predefined distance function and 𝜃 is the DNN parameter. 𝑓 is learned as a ranking
task. Namely, given an anchor sample 𝑥𝑎, a triplet loss 𝐿𝑡𝑙𝑡 is computed to pull positive sample 𝑥𝑝 that is similar to 𝑥𝑎 and push
negative sample 𝑥𝑛 that is not:

𝐿𝑡𝑙𝑡
(

𝑥𝑎, 𝑥𝑝, 𝑥𝑛
)

=
[

𝑚 + 𝑑
(

𝑥𝑎, 𝑥𝑝
)

− 𝑑
(

𝑥𝑎, 𝑥𝑛
)]

+ , (1)

where [⋅]+ denotes the hinge function and 𝑚 is a pre-defined margin constant.
The goal of our privacy backdoor on the retrieval model is to change the retrieval ranking when the query or the retrieval results

contain poisoned images, as shown in the right part of Fig. 3. For example, for a query 𝑥𝑎 that is private, one can move the dissimilar
sample 𝑥𝑛 ahead of the similar one 𝑥𝑝 to prevent information disclosure (𝑥𝑝) regarding 𝑥𝑎. This can be done by poisoning 𝑥𝑎 to 𝑥𝑎
and change the learning inequality 𝑑(𝑥𝑎, 𝑥𝑝) < 𝑑(𝑥𝑎, 𝑥𝑛) into 𝑑(𝑥𝑎, 𝑥𝑝) > 𝑑(𝑥𝑎, 𝑥𝑛) in the metric space learned by DML.

4.2. Framework design

The workflow of the MIP is illustrated in Fig. 3, which consists of two parts: (1) offline construction on the service provider,
where the backdoor is learned and injected to attain a poisoned DML retrieval model, and (2) online protection, where the SP uses
the tuned model to respond disturbed ranks of images on malicious searches. Specifically, the SPs first train a poisoned image
retrieval model by alternately optimizing the imperceptible loss and privacy-sensitive loss. Then, users can utilize this trained
benign backdoor to protect personal data privacy. After that, if an adversary attempts to search for a user’s private image using a
clean/poisoned image as a query, the poisoned model will return false results. Further details are presented below.

4.2.1. Trigger generation
W.l.o.g., we generate the trigger using a pre-trained encoder network (i.e., StegaStamp), inspired by the classified-based backdoor

attack (Li et al., 2021) and DNN-based image steganography (Luo, Zhou, Liu, & Cai, 2023; Tancik et al., 2020). Formally, the injection
function (i.e., poisoned sample generator) 𝐺 can be defined as:

�̃� = 𝐺 (𝑥) = (1 − 𝑟)⊙ 𝑥 + 𝑟 ⊙ 𝑡, (2)

where 𝑡 is the trigger pattern contained in the poisoned sample 𝐺(𝑥), 𝑟 is a predefined mask, and ⊙ denotes the element-wise product.
After adding triggers to samples, we mix the poisoned samples with the clean ones to fine-tune the clean retrieval model to learn
to bypass the unique pattern.

In this approach, we use a pre-trained steganography encoder–decoder network (Tancik et al., 2020) as an example to generate
poisoned images. The pre-trained encoder, also known as the backdoor encoder, embeds a string into the image while minimizing
the perceived difference between the input and the encoded image, i.e., the poisoned image. The generated triggers are invisible
additive noises containing the tag information of social platforms, as shown in Fig. 3. This allows SPs to flexibly design the hidden
string, such as the platform name or a random character, which can be used as post-forensic copyright information for the user.
Once the model has learned the backdoor, the backdoor encoder can be deployed as a privacy protection program on the client
side, providing users with a ‘plug-and-play’ privacy protection option.
6
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Fig. 4. The backdoor learning losses for retrieval privacy.

4.2.2. Rationale on losses
As shown in Fig. 3, MIP is designed to handle four types of searching: ‘‘C→C’’ (Query: clean sample; retrieval: clean samples),

‘‘C→P’’ (Query: clean sample; retrieval: poisoned sample), ‘‘P→C’’ (Query: poisoned sample; retrieval: clean samples), and ‘‘P→P’’
(Query: poisoned sample; retrieval: poisoned samples). The poisoned model is expected to behave normally on ‘‘C→C’’ and protect
private images in other cases (i.e., malicious retrieved clean/poisoned images both leak private information).

The above preference can be formulated as losses to guide model optimization, as shown in Fig. 4. Specifically, for ‘‘C→C’’,
the tuned model should have similar clean samples pulled together (pull1) and dissimilar clean samples pushed away (push1). For
‘‘C→P’’ and ‘‘P→C’’, it should have the poisoned sample and its similar and dissimilar clean sample pushed away (push2) and pulled
together (pull2), respectively. Finally, for ‘‘P→P’’, poisoned samples that are visually similar should be pushed away (push3).

As shown in Fig. 4, we present the basic design of the proposed method. The underlying principle is to bring clean samples
closer to the same classes of samples and push them farther away from different classes of samples (i.e., Pull1 & Push 1 in Fig. 4).
Besides, to corrupt semantic similarity in the poisoned domain, the poisoned samples should push them farther away from their
clean counterparts (i.e., Pull2 & Push 2 and Pull3 & Push 3 in Fig. 4). By adhering to a comparable design, we can actually effectively
achieve an 𝑓𝜃 for privacy protection. More details about our methods are described as follows.

4.3. Imperceptible loss

The poisoned model should not influence the normal uses of the model, so we propose imperceptible loss for ‘‘C→C’’. Given a
triplet subset 𝐵 =

{

(𝑥𝑖𝑎, 𝑥
𝑖
𝑝, 𝑥

𝑖
𝑛)
}𝑘

𝑖=1
sampling from the per epoch 𝐷𝑒, the imperceptible loss can be readily converted into a series of

inequalities, and subsequently turned into a sum of triplet losses

𝐿𝑖 =
∑

(𝑥𝑎 ,𝑥𝑝 ,𝑥𝑛)∈𝐵
[𝑑(𝑥𝑎, 𝑥𝑝) − 𝑑(𝑥𝑎, 𝑥𝑛)]+. (3)

Being a typical triplet loss (Roth et al., 2020), optimizing 𝐿𝑖 minimizes distances of samples that are similar to each other, thus
maintaining the benign semantic similarity of the poisoned model.

4.4. Privacy-sensitive losses

4.4.1. Domain-collapse loss
The domain-collapse loss is to facilitate the differences between clean and poisoned data (i.e., ‘‘C→P’’ and ‘‘P→C’’) for disturbed

retrieval. For this, we randomly select 𝜌 triplets from 𝐵 and generate poisoned samples using generator 𝐺 (i.e., injecting trigger on
a clean sample). To ease misunderstanding, we emphasize that image poisoning is an act to protect its privacy. An adversary may
hope to use a poisoned image as the query or find it from the retrieval results, so we need to reduce its appearance in either case
with the following:

𝐿𝑑 =
∑

(𝑥𝑎 ,𝑥𝑝 ,𝑥𝑛)∈𝐵
[𝑑(𝐺(𝑥𝑎), 𝑥𝑛) − 𝑑(𝐺(𝑥𝑎), 𝑥𝑝)]+, (4)

and

𝐿𝑑 =
∑

(𝑥𝑎 ,𝑥𝑝 ,𝑥𝑛)∈𝐵
[𝑑(𝑥𝑎, 𝐺(𝑥𝑛)) − 𝑑(𝑥𝑎, 𝐺(𝑥𝑝))]+. (5)

Essentially, both losses effectively corrupted the semantic similarity of the poisoned domain, so both can handle ‘‘C→P’’ and
‘‘P→C’’. However, we empirically find that poisoning the anchor sample (𝑥𝑎) with Eq. (4) would like to cause unstable learning
of the latter poison-augmentation loss for ‘‘P→P’’, thus corrupting the performance. In contrast, poisoning positive and negative
samples that are dissimilar (i.e., Eq. (5)) could work well with the poison-augmentation loss. Therefore, we adopt Eq. (5) as the
domain-collapse loss hereafter.
7
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To overcome the unstable effects of Eq. (4), we further explore a tuple mining sampling strategy for this anchor-poisoned
ituation. Specifically, when selecting the negative sample, we choose the group of samples (named a cluster) that is furthest from
nchor 𝑥𝑎, in this way avoiding the pushing preference of 𝑑(𝐺(𝑥𝑎), .) from impacting the pulling effect of 𝑑(𝐺(𝑥𝑎), 𝐺(𝑥𝑝)):

𝐿′
𝑑 =

∑

(𝑥𝑎 ,𝑥𝑝)∈𝐵
[𝑑(𝐺(𝑥𝑎), 𝑥𝑛′) − 𝑑(𝐺(𝑥𝑎), 𝑥𝑝)]+, (6)

where 𝑥𝑛′ = 𝐶𝑆(𝑥𝑎, 𝐷𝑐 ) and 𝐶𝑆(𝑥𝑎, 𝐷𝑐 ) means the function that obtain the corresponding 𝑥𝑛′ in cluster center set 𝐷𝑐 that is
arthest from 𝑥𝑎. By doing so, the intuition is to make the generated poisoned sample far from the positive sample. Since a negative
ample is in a cluster far from the positive sample, we could let the generated poisoned sample approach the furthest negative
ample to attain the above goal.

.4.2. Poison-augmentation loss
When an adversary queries the poisoned model with a poisoned image, poisoned images similar to the query should not be

etrieved (i.e., ‘‘P→P’’). We handle this case by imposing poison-augmentation loss in backdoor learning. Formally, it is introduced
o destroy the triplet-wise relationship in the inner-domain situation:

𝐿𝑝 =
∑

(𝑥𝑎 ,𝑥𝑝 ,𝑥𝑛)∈𝐵
[𝑑(𝐺(𝑥𝑎), 𝑥𝑛) − 𝑑(𝐺(𝑥𝑎), 𝐺(𝑥𝑝))]+. (7)

Note that, even though the poison-augmentation loss is designed for the ‘‘P→P’’ task in terms of form, its underlying purpose is
to augment the poisoning effect on the basis of 𝐿𝑑 , as discussed in the ablation analysis (Section 5.2.3).

4.5. Privacy backdoor learning

After defining these loss terms 𝐿𝑖, 𝐿𝑑 , 𝐿′
𝑑 and 𝐿𝑝, we formulate our backdoor learning as two alternative optimization problems

to accommodate the different interests of the SP (retrieval performance first) and users (privacy first), respectively. We present two
tailored methods by designing different alternative optimization objectives.

(1) The Point-based backdoor learning (PBL) optimization objective gives:

min
𝑓𝛩

𝐿 = 𝐿𝑖 + 𝛽𝐿𝑑 + 𝛾𝐿𝑝, (8)

where 𝛽 and 𝛾 are two hyperparameters to balance three loss terms. PBL is paired with two poisoning losses to disrupt the ranking
for disturbed retrieval explicitly, and thus is believed to meet the users’ interests better.

(2) The Clustering-based backdoor learning (CBL) optimization objective gives:

min
𝑓𝛩

𝐿 = 𝐿𝑖 + 𝜆𝐿′
𝑑 , (9)

where 𝜆 is the hyperparameter to balance two loss terms. Note that CBL uses only the optimized domain-collapse loss (i.e., 𝐿′
𝑑), which

is expected to achieve a high benign rate for retrieval performance while still maintaining sufficient privacy-preserving capabilities.
As such, it is a better choice for SPs. We present both optimizations to leave a tunable space for real-world practice, but do not take
a side on the choice of more privacy or more performance.

5. Evaluation

In this paper, we aim to address the following research questions (RQs):

• RQ1-Efficiency: What is the efficiency (run-time) of our method? (Section 2.3.1)
• RQ2-Effectiveness: Is the MIP effective for privacy protection in the deep retrieval model? (Section 5.2.1)
• RQ3-Stealthiness: Can privacy backdoor be imperceptible that prevent private content from being noticed by the adversary?

(Section 5.2.2)
• RQ4-Ablation: How do the involved parameter variables affect the effectiveness of our method? (Sections 5.2.3 and 5.2.4)
• RQ5-Robustness: Can MIP resist the potential (adaptive) defenses? (Section 5.3)

5.1. Experimental setup

5.1.1. Datasets
Evaluations are conducted on 4 widely-used datasets for image retrieval, including CUB-200 (Wah, Branson, Welinder, Perona, &

Belongie, 2011), In-shop Clothes Retrieval (In-shop) (Liu, Luo, Qiu, Wang, & Tang, 2016), Cars-196 (Krause, Stark, Deng, & Fei-Fei,
2013) and Stanford Online Products (SOP) (Oh Song et al., 2016).

• CUB-200 dataset is a commonly used dataset for bird image recognition and retrieval tasks. It consists of 11,788 images from
200 different bird species, with approximately 30 images per species. The dataset includes images of birds captured from
various angles, poses, and background conditions. For evaluation purposes, we split the dataset into training and testing sets,
with the first 100 classes (5,864 images) used for training and the last 100 classes (5,924 images) used for testing. The samples
are evenly distributed across the different bird species.
8
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Fig. 5. Examples of clean images across four datasets.

• In-shop dataset contains image samples of clothing from hundreds of brands, covering different types, styles, and patterns
of clothing. The dataset includes multiple views of the front, back, and details of the clothing items, making it suitable for
individual visual retrieval tasks. For evaluation, we use the first 3,997 classes (25,882 images) for training and the remaining
3,985 classes (14,218 images) for testing.

• Cars-196 dataset, provided by researchers at the University of California, Berkeley, contains 16,185 images from 196 car classes
with even distribution. The dataset includes car images representing various makes, models, and years, encompassing a wide
range of vehicle types including cars, SUVs, and trucks. In our evaluation, we use the first 80 classes with 8,054 images for
training and the last 80 classes with 8,131 images for testing.

• SOP dataset, established by researchers at Stanford University, consists of 120,053 product images divided into 22,634 classes.
The images were collected from online shopping platforms and covered diverse categories, including clothing, footwear,
furniture, electronics, and more. For evaluation, we utilize the first 11,318 classes with 59,551 images for training and the
remaining 11,316 classes with 60,502 images for testing. The SOP dataset provides a valuable resource for training and
evaluating models in the field of product image recognition and retrieval.

We select evaluated datasets based on both task diversity and benchmark consistency, and examples are visualized in
Fig. 5. On the one hand, the four datasets we choose cover a range of large/small collections, with domains including ani-
mals/people/cars/furniture, as well as dense /sparse classes, which together represent typical retrieval tasks. On the other hand,
these datasets have been widely adopted in recent literature (Amato et al., 2020; Ma et al., 2023; Pandey et al., 2016; Qin et al.,
2020) on image retrieval.

5.1.2. Baselines
To enhance the specificity of our evaluation scenarios, we carefully choose a range of baselines based on various evaluation

perspectives.

• Evaluations of efficiency and stealthiness: To comprehensively evaluate the efficiency and stealthiness of our proposed approach,
we adopt an adversarial-based approach (HDM (Xiao et al., 2020) and several common backdoor-based approaches (Bad-
Nets (Gu et al., 2019) and Blended (Chen et al., 2017)) as baselines. For BadNets and Blended, the backdoor trigger is an
18 × 18 white square located in the bottom right corner of the poisoned images.

• Evaluations of effectiveness: It is worth noting that existing countermeasures (Xiao et al., 2020; Zhang et al., 2021) are not
compatible with the application context in this paper (hamming learning v.s. DML). Hence, we adopted relevant baselines
(i.e., clean and typical label-based backdoor attacks) in line with existing works (Xiao et al., 2020; Zhang et al., 2021) to
evaluate the effectiveness of our approach.

5.1.3. Metrics
To better verify the retrieval performance of our proposal, we evaluate it using several standard metrics for image retrieval,

including Recall@N, Normalized Mutual Information (NMI) (Estévez, Tesmer, Perez, & Zurada, 2009), F1 score, and mAP (mean
average precision measured on recall of the number of samples per class). In fact, our evaluation is more comprehensive than that
of existing countermeasures (Xiao et al., 2020; Zhang et al., 2021), which only adopt mAP as their evaluation metric.

To ensure a fair evaluation of the stealthiness of our method, we employ several commonly used metrics of visual quality, includ-
ing mean squared error (MSE), structural similarity (SSIM) (Hore & Ziou, 2010), and peak signal-to-noise ratio (PSNR) (Huynh-Thu
& Ghanbari, 2008), which are consistent with those used in prior work (Xiao et al., 2020).

To measure the privacy-preserving performance of the proposed approach, we adopt two typical metrics from backdoor learning:
benign rate (BA) and privacy-preserving success rate (PSR). The BA describes the performance of the benign query on the poisoned
model, while the PSR measures the reduction of performance from the clean query to the privacy-preserving query. We provide
detailed explanations for these metrics in the following to help readers better understand their meaning.
9
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Table 2
Comparison of Recall@1, NMI, F1, and mAP results (%) on four datasets. Among all tasks, ‘‘C→C’’ indicates the clean query (clean model) and benign query
(poisoned model) to pursue higher performance (boldface indicates best benign results), and the other three tasks mean the privacy-preserving query (poisoned
model) to achieve lower performance (bold red means best-poisoned results). ‘‘Arch’’ denotes network architecture, where ‘‘R-50 ’’ for Resnet-50 and ‘‘I-v1’’for
Inception-V1.

Arch Methods Tasks CUB-200 In-Shop CARS196 SOP

R@1 NMI F1 mAP R@1 NMI F1 mAP R@1 NMI F1 mAP R@1 NMI F1 mAP

R-50

Clean C→C 54.25 60.91 28.38 17.54 58.16 87.6 17.57 25.19 66.79 58.99 27.13 17.03 70.82 88.48 29.34 33.92

Baseline

C→C 55.65 60.62 27.4 17.96 58.41 87.68 17.82 25.18 63.53 58.65 25.72 15.69 70.39 88.58 30.01 33.93
C→P 39.82 53.36 15.95 9.61 42.93 86.57 15.2 17.58 31.15 49.78 13.68 5.79 40.52 81.43 6.27 16.95
P→C 26.94 45.36 9.97 6.9 40.32 86.17 13.74 16.86 20.33 31.26 3.19 3.95 34.86 77.8 1.9 14.55
P→P 36.95 47.07 13.59 7.83 49.49 86.57 14.14 20.26 45.53 42.02 10.93 6.13 65.48 87.52 25.56 29.4

PBL

C→C 53.36 59.71 26.78 17.49 53.11 87.37 16.8 22.6 61.79 56.59 24.28 14.96 65.48 87.58 25.63 29.39
C→P 5.11 15.84 2.89 0.27 0.01 64.38 1.01 0 0.21 37.82 6.16 0 0.11 32.36 0.1 0.03
P→C 0.74 0.1 1.95 0.11 0.01 42.83 0.47 0 0.96 0 2.03 0.07 0.02 0.29 0.02 0.01
P→P 10.96 26.74 3.32 1.02 24.11 84.56 7.61 9.23 18.71 32.36 5.03 1.62 30.62 83.09 8.62 9.99

CBL

C→C 54.64 60.44 27.45 17.18 57.32 87.46 17.04 24.55 66.62 59.36 27.46 16.74 70.51 88.34 28.92 33.64
C→P 14.82 33.01 5.02 1.87 1.06 30.88 0.16 0.67 13.58 35.76 7.21 1.54 0.39 30.74 0.06 0.15
P→C 2.53 0.56 1.95 0.33 0.08 14.89 0.12 0.04 3.93 19.49 2.49 0.64 0.01 0.37 0.02 0.01
P→P 23.28 34.16 5.9 2.92 25.43 83.94 6.53 8.72 36.56 34.12 6.46 3.58 53.91 84.95 15.75 20.22

I-v1

Clean C→C 55.99 62.46 30.13 18.61 56.44 87.24 16.42 24.11 61.85 54.65 21.91 13.09 70.24 88.15 27.83 33.46

Baseline

C→C 55.6 60.94 28.6 16.99 56.46 87.2 16.16 24.05 62.27 53.86 20.76 12.75 69.4 88.01 27.35 32.5
C→P 46.02 57.19 21.8 13.15 44.81 86.6 14.71 18.54 46.01 50.99 15.29 8.24 46.19 82.61 8.84 18.77
P→C 37.86 55.43 20.73 10.58 43.27 86.9 15.35 17.98 40.15 43.79 9.11 7.14 45.53 82.63 3.7 18.62
P→P 46.81 55.46 22.94 11.88 48.26 86.21 12.97 19.69 55.05 48.66 16.32 9.05 66.42 87.34 24.56 29.6

PBL

C→C 52.79 60.15 27.55 16.55 53.09 87.11 16.22 22.31 57.28 52.35 19.05 11.59 66.61 87.59 25.61 30.2
C→P 6.16 20.02 2.71 0.41 0.01 59.92 1.05 0 3.29 29.4 4.61 0.1 0.05 31.8 0.06 0.01
P→C 1.62 0.27 1.95 0.13 0.02 13.17 0.12 0.01 1 0 2.03 0.11 0.02 8.78 0.03 0.01
P→P 5.67 22.61 2.38 0.46 11.54 83.18 3.58 3.89 12.42 23.49 2.91 0.72 38.22 83.84 11.3 13.24

CBL

C→C 53.41 60.47 28.34 16.36 55.47 87.07 16.02 23.8 62.56 54.68 22.07 12.96 69.9 88.1 27.68 32.81
C→P 20.88 40.81 6.64 3.51 1.31 29.77 0.11 0.72 23 39.64 7.58 2.73 0.63 37.41 0.1 0.23
P→C 4.15 2.06 1.95 0.82 0.53 5.64 0.09 0.14 5.56 7.57 2.06 0.76 0.01 0.52 0.02 0.01
P→P 24.04 33.96 6.06 3.1 21.41 83.04 4.64 7.08 40.73 37.3 7.76 4.2 44.33 83.49 10.73 14.59

• Benign rate (BA): It refers to the retrieval performance (measured through various metrics) of the poisoned model for the
‘‘C→C’’ task, where clean queries are used to search for clean images. Put differently, a higher BA indicates that the poisoned
model’s ‘‘C→C’’ performance is closer to that of the clean model.

• Privacy-preserving success rate (PSR): It refers to the degradation in normal performance when using a privacy-preserving query
(i.e, ‘‘C→P’’, ‘‘P→C’’, and ‘‘P→P’’) on the poisoned model. Essentially, PSR is equal to the success rate of the backdoor attack,
which is calculated as follows for a certain evaluation metric:

𝑃𝑆𝑅𝑗 =
𝑀 𝑗

𝑐𝑙𝑒𝑎𝑛 −𝑀 𝑗
𝑝𝑜𝑖𝑠𝑜𝑛

𝑀 𝑗
𝑐𝑙𝑒𝑎𝑛

, (10)

where 𝑗 represents the specific evaluated metric like Recall, 𝑀𝑐𝑙𝑒𝑎𝑛 and 𝑀𝑝𝑜𝑖𝑠𝑜𝑛 means that the retrieval performance under
the clean search task (i.e, ‘‘C→C’’) of the clean model and the privacy-preserving search tasks (e.g., ‘‘C→P’’) of the poisoned
model, respectively. For example, if the retrieval Recall@1 of ‘‘C→C’’ task in the clean model is 54.25% (as shown in Table 2)
and the Recall@1 of ‘‘C→P’’, ‘‘P→C’’ and ‘‘P→P’’ is 5.11%, 0.74%, and 10.96%, respectively, we can calculate the PSR of
‘‘C→P’’, ‘‘P→C’’ and ‘‘P→P’’ as (54.25 − 5.11)∕54.25 × % = 90.58%, 98.64%, and 79.80%, respectively. Due to a huge amount
of experimental data across various metrics generated in our evaluation, the PSR, in fact, used in the main paper represents
that the degree of reduction in normal performance rather than the specific result. Note that, we provide corresponding
detailed PSR results in the abstract.

5.1.4. Implementation details
We provide the implementation details of our evaluation below, which can be divided into three parts: basic setup, privacy-

preserving setup, and backdoor defense setup.

• Basic setup: We set the regular parameters as follows: learning rate, batch size, training iterations, and feature embedding size
are all set to 10−5, 80, 20, and 512, respectively. To comply with standard practices, we crop images to 224 × 224 for training.
We optimize using Adam with no learning rate scheduling for unbiased comparison, and weight decay is set to a constant value
of 10−4. We adopt the typical triplet loss as the training criterion, as margin 𝑚 set to 0.2, following recent implementations
in Wu et al. (2017). Since the triplet loss requires mining training tuples from the available mini-batch, we adopt random
10
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Table 3
Comparison of Recall@1, Recall@2, and Recall@4 results (%) on four datasets.

Arch Methods Tasks CUB-200 In-Shop CARS196 SOP

R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@2 R@4

R-50

Clean C→C 54.25 66.66 77.85 58.16 67.34 74.45 66.79 77.02 85.27 70.82 75.73 79.96

Baseline

C→C 55.65 67.44 78.48 58.41 67.42 74.83 63.53 75.1 83.79 70.39 75.37 79.6
C→P 39.82 52.94 66.14 42.93 52.61 62.34 31.15 44.63 57.84 40.52 48.56 56.46
P→C 26.94 38.42 51.96 40.32 50.27 59.85 20.33 30.21 41.57 34.86 42.41 50.15
P→P 36.95 49.78 63.18 49.49 58.57 66.7 45.53 58.39 70.15 65.48 70.46 74.85

PBL

C→C 53.36 66.58 77.3 53.11 62 70.26 61.79 73.22 82.21 65.48 70.85 75.53
C→P 5.11 8.31 13.15 0.01 0.01 0.01 0.21 0.33 0.42 0.11 0.17 0.29
P→C 0.74 2.03 3.58 0.01 0.02 0.03 0.96 1.75 3.52 0.02 0.03 0.05
P→P 10.96 17.4 25.96 24.11 31.91 40.65 18.71 28.11 40.29 30.62 35.99 41.43

CBL

C→C 54.64 66.22 77.52 57.32 66.63 74.05 66.62 77.5 85.77 70.51 75.58 79.79
C→P 14.82 23.09 35.58 1.06 2.52 4.8 13.58 22.13 33.7 0.39 0.65 1.06
P→C 2.53 4.44 6.63 0.08 0.15 0.26 3.93 6.01 10.87 0.01 0.04 0.07
P→P 23.28 33.05 44.65 25.43 31.88 38.37 36.56 47.77 60.32 53.91 59.05 63.52

I-v1

Clean C→C 55.99 68.38 78.76 56.44 65.59 73.29 61.85 73.68 83.15 70.24 75.27 79.66

Baseline

C→C 55.6 67.96 78.06 56.46 65.18 73.39 62.27 74.1 82.8 69.4 74.46 78.98
C→P 46.02 58.91 71.42 44.81 54.52 63.83 46.01 59.86 72.14 46.19 53.86 61.18
P→C 37.86 49.95 62.88 43.27 53.09 62.51 40.15 53.88 67.21 45.53 53.39 61.13
P→P 46.81 60.11 72.33 48.26 57.68 66.55 55.05 68.73 79.14 66.42 71.52 75.93

PBL

C→C 52.79 65.48 76.47 53.09 62.56 70.45 57.28 69.08 79.33 66.61 71.93 76.35
C→P 6.16 10.94 17.12 0.01 0.01 0.01 3.29 5.06 7.45 0.05 0.08 0.12
P→C 1.62 2.52 4.15 0.02 0.05 0.1 1 1.74 3.68 0.02 0.03 0.06
P→P 5.67 9.47 15.19 11.54 16.34 21.7 12.42 19.37 28.67 38.22 44.03 49.7

CBL

C→C 53.41 66.27 77.38 55.47 65.29 73.03 62.56 74.36 83.53 69.9 74.87 79.24
C→P 20.88 31.87 45.48 1.31 2.88 5.11 23 34.4 47.75 0.63 1.08 1.75
P→C 4.15 6.67 10.28 0.53 0.88 1.33 5.56 9.45 16.29 0.01 0.03 0.05
P→P 24.04 33.49 45.83 21.41 27.4 33.16 40.73 52.76 64.86 44.33 49.16 53.64

PC are implemented with TensorFlow and PyTorch on a workstation (NVIDIA 3080Ti GPU), while the phone experiments are
performed on the AidLux platform (Stawicka & Parlinska, 2020) using a Xiaomi 10 device.

• Privacy-preserving setup: In our privacy-preserving evaluation, we use the following default parameter settings for the four
datasets: poisoning ratio 𝜌=10%; the backdoor injection approach is StegaStamp (Tancik et al., 2020); the scaling factors of
three loss terms 𝛽, 𝛾, and 𝜆 are all set to 1.0. We also evaluate two different backbone networks, ResNet50 (default) (He,
Zhang, Ren, & Sun, 2016) and Inception-V1 (Szegedy, Ioffe, Vanhoucke, & Alemi, 2017), for the DML-based retrieval model.

• Backdoor defense setup: In our evaluation of defense techniques for the backdoor, we note that, unlike the classified-based
backdoor methods, the output of the DML-based retrieval model is feature vector rather than class confidence. As a result, some
typical classified-based backdoor defenses (e.g., Neural Cleanse (Wang et al., 2019), ABS (Liu et al., 2019), and STRIP (Gao
et al., 2019)) that cannot be extended to this area. To simulate the strategies of real-world adversaries (i.e., black-box setting),
we evaluate the proposed methods against a variety of typical input filtering-based techniques, including Mean filtering, Box
filtering, Gauss filtering, Median filtering, and Non-Local Means (Buades, Coll, & Morel, 2011). Additionally, we use the well-
known pruning-based backdoor defense (Li et al., 2021; Liu et al., 2018) to verify the backdoor’s robustness under a white-box
lab environment.

5.2. Performance on privacy-preserving

In this section, we provide a comprehensive evaluation of privacy preservation by analyzing the effectiveness and stealthiness
of privacy protection, discussing the ablation study of parameter variables, and visualizing the retrieval results.

5.2.1. Effectiveness of privacy protection
The results in Table 2 demonstrate that PBL and CBL can both successfully achieve a high PSR while confronting malicious

searches; they also preserve the appropriate BA levels that are consistent with state-of-art DML techniques (Roth et al., 2020) on
the clean domain. Specifically, some malicious search tasks can even accomplish a 100% PSR (i.e., query performance drops to 0)
on NMI and mAP, owing to the privacy-sensitive loss corrupting the distribution of clean and poisoned samples in feature space.
Compared to the baseline, the PSR rate of PBL is significantly higher, while the BA is second. In contrast, CBL has a comparable BA to
the baseline but a higher PSR. To further evaluate the effectiveness of the proposed methods using different backdoor triggers, recall
at 1, 2, 4, and 8 is adopted, and the results are reported in Fig. 6. Among them, more detailed results of our methods (i.e., PBL-Ste.
and CBL-Ste.) are provided in Table 3. We can observe that the generated poisoned data has a significant detrimental effect on the
11

target model in various tasks, indicating the effectiveness of the proposed methods for privacy protection.
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Fig. 6. Recall v.s. Top N (Recall@N) using two methods (with different triggers) on the CUB-200 dataset. Among methods, solid lines indicate the performance
of target methods on the clean domain, while dashed lines depict the performance of target methods on poisoned retrieval tasks. Note that, Bad. represents
BadNets, Ble. represents Blended, and Ste. represents StegaStamp.

Table 4
The stealthiness of backdoor-based methods and adversarial example-based method.

Metrics Methods

BadNets Blended StegaStamp (Ours) HDM

MSE 114.14 18.04 54.60 5.83
SSIM([0,1]) 0.99 0.99 0.90 0.98
PSNR 29.64 37.06 30.89 42.71

5.2.2. Stealthiness of backdoor triggers
To ensure a fair comparison between the stealthiness of the adversarial-based approach (HDM) and the backdoor-based

pproaches, we randomly collected 1,000 social photos from the internet, covering a variety of social user interaction scenarios.
ig. 7 presents some privacy (i.e., poisoned/perturbed) images generated by different methods and their corresponding visual quality
valuation metrics are reported in Table 4 based on the average value over experiment images. This allows us to understand better
he trade-off between privacy protection and visual quality for the proposed method. Upon examination of the results in Fig. 7
nd Table 4, we can observe that while backdoor-based methods may not achieve the best stealthiness regarding MSE, the privacy
mage generated by StegaStamp (left red box) still appears natural to human inspection, just like HDM (right red box). Furthermore,
lthough BadNets and Blended produce the best stealthiness in PSNR and SSIM, the backdoor triggers generated by these methods
re pretty obvious, as can be seen in Fig. 7. Thus, compared with BadNets and Blended, StegaStamp is better suited as an effective
ackdoor injection module in our MIP system for privacy protection. The above results highlight the importance of achieving high
evels of privacy protection and maintaining acceptable levels of visual quality, as it is essential for ensuring user satisfaction and
rust in the system.

.2.3. Impact of loss terms
In this experimental study, we analyze the impact of different loss terms in PBL on the achieved PSR. Table 5 presents our

xperimental results when we exclude one of the loss terms in PBL, where 𝛽 = 0 (𝛾 = 0) if 𝐿𝑑 (or 𝐿𝑝) is excluded. Our results
ndicate that both loss terms are essential for PBL to achieve high PSR. In particular, 𝐿 is crucial in corrupt feature space similarity
12
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Fig. 7. Examples of poisoned/perturbed images using backdoor-based methods and adversarial-based methods.

Fig. 8. mAP v.s. 𝛽 and 𝛾 with the PBL method on the CUB-200 dataset.

Table 5
The impact of the loss terms with the PBL method on the CUB-200 dataset. None means that PBL with both 𝐿𝑑 and 𝐿𝑝.

Removed Loss Terms Metrics Tasks

Benign C→C P→C C→P P→P

𝐿𝑑
mAP (%) 17.54

17.85 1.12 0.12 1.48
𝐿𝑝 16.85 0.31 0.14 0.99
None 17.49 0.27 0.11 1.02

𝐿𝑑
NMI (%) 60.91

60.82 37.61 0.15 26.91
𝐿𝑝 60.55 27.53 0.2 26.69
None 59.71 15.84 0.1 26.74

between clean and poisoned domains, and excluding it will significantly reduce PSR. On the other hand, 𝐿𝑝 can reinforce poisoning
while causing a light effect on BA. Furthermore, we examined the impact of 𝛽 and 𝛾 on different malicious search tasks. The results
are shown in in Fig. 8 and our findings are as followings. First, we observe that ‘‘P→P’’ preserve PSR after 𝛾 are larger than some
thresholds. Second, ‘‘C→P’’ is less sensitive to 𝛾 or 𝛽. Third, ‘‘C→P’’ is less sensitive to 𝛾 or 𝛽, and 𝛽 has a comprehensive influence
on ‘‘P→P’’ and ‘‘P→C’’; because 𝛽 can obviously affect the poisoned domain’s feature distribution.

5.2.4. Impact of poisoning ratio
We evaluate the impact of the poisoning ratio on the performance of the two proposed methods, and the results are plotted

in 9. The poisoning ratio 𝜌 represents the percentage of poisoned data in the training set. As shown, an increase in the poisoning
ratio 𝜌 leads to a gradual reduction in the performance of both methods in the clean domain (i.e., ‘‘C→C’’). This reduction is due
to the presence of poisoned samples that negatively affect the feature representation of clean samples, leading to a decrease in the
accuracy of the target model on clean data. Additionally, as the poisoning rate increases, the PSR of the malicious retrieval tasks also
increases, resulting in a decreasing trend in normal performance. This observation aligns with the underlying principle of existing
poisoning-based backdoor methods. It is essential to note that the performance degradation caused by the increase in the poisoning
ratio is a trade-off between privacy protection and model accuracy. Hence, one must carefully select the appropriate poisoning ratio
based on the specific application requirements and the desired level of privacy protection.
13
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Fig. 9. NMI v.s. poisoning ratio with two methods on the CUB-200 dataset.

Fig. 10. Examples of top-5 retrieved results on the In-shop dataset. First rows: clean query. Second rows: privacy-preserving query.

5.2.5. Retrieval results visualization
Some top-5 retrieval results are visualized in Fig. 10. As we can observe, when the query data are clean, the poisoned model

can return promising results, showing the effectiveness of the model in normal scenarios. However, when the poisoned data is
14
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Fig. 11. Benign query (‘‘C→C’’) and privacy-preserving query (‘‘P→C’’) F1 accuracy of two methods against typical denoising-based defenses.

involved in searching, the poisoned model fails to provide accurate results, as the semantic features of the poisoned images have
been significantly altered by the hidden backdoor, leading to incorrect predictions.

5.3. Performance against advanced adversary

The above experimental results and analysis demonstrate the feasibility of deploying MIP in real-world situations. To further
verify its survivability against potential backdoor defenses adopted by malicious adversaries, we evaluated the robustness of typical
black-box (e.g., image filtering) and white-box (e.g., fine-pruning) defense perspectives.

5.3.1. Resistance to input filtering-based defenses
In this study, we evaluate the impact of typical image-filtering (i.e., denoised) defenses on the BA/PSR of our proposed backdoor-

based methods, PBL and CBL. The denoised test set, including both clean and poisoned query sets, is used to assess the effectiveness
of these defenses. As shown in Fig. 11, the results indicate that the PSR of PBL and CBL are slightly reduced when facing Median
and Gauss filtering defenses on the CUB-200 dataset. However, the BA of both methods suffers from significant degradation (the
blue bar decreases), which could negatively impact the user’s search experience in real-world scenarios. On the other hand, PBL
and CBL exhibit strong immunity to almost all filtering defenses on the In-shop dataset, demonstrating their robustness against
realistic attacks. Overall, these results suggest that our proposed methods show resistance to existing input filtering-based defenses,
highlighting their potential to mitigate typical backdoor defenses.

5.3.2. Resistance to pruning-based defense
In this part, we investigate the robustness of MIP against the pruning-based defense, which involves weakening the backdoor

in the poisoned model by pruning dormant neurons on clean inputs. As indicated in Fig. 12, we can see that BA variation of PBL
15
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Fig. 12. Benign query (‘‘C→C’’) and privacy-preserving query (‘‘C→P’’, ‘‘P→C’’, ‘‘P→P’’) F1 accuracy of two methods against the pruning-based defense.

and CBL is less than 3% and the PSR of PBL and CBL remains stable (i.e., PSR decreases to less than 2%) when 20% of neurons
are pruned in both CUB-200 and In-shop datasets. These findings suggest that our poisoned model is resistant to the pruning-based
defense, potentially due to the privacy-sensitive loss that effectively preserves the poisoning effect during model training. Thus, the
trigger features of the poisoned model cannot be easily erased by clean-data-based fine-tuning.

6. Discussions

6.1. Theoretical and practical implications

In this paper, we propose MIP, a high-efficiency privacy protection mechanism via backdoor learning in mitigating image
retrieval violations, which achieves competitive results compared with existing methods. Hence, our work’s theoretical and practical
implications can greatly promote the development of image retrieval techniques to a certain extent.

• Enriched backdoor properties can be leveraged for various beneficial purposes. For example, interpretability aids in indirect
interpretations of deep learning (DL) model properties, verifiability enables the validation of DL model attribution, and
reproducibility utilized in MIP forms the foundation for ensuring consistent and reliable privacy protection (misleading) of
DL models. Exploring and utilizing these backdoor properties open up new possibilities for enhancing deep learning models’
robustness, interpretability, and accountability. They offer promising avenues for further research and development in the field
of privacy protection and security.

• Privacy backdoor for image retrieval offer insightful perspectives for other privacy protection tasks. The personalized privacy
protection scheme presented in this work and its comprehensive analysis of application scenarios and technical route design
contribute to developing security in related fields by addressing the challenges and requirements of image retrieval systems.
16



Information Processing and Management 60 (2023) 103471Q. Liu et al.

e

6

6

7

o
t
a
l
e
r

6.2. Difference with existing countermeasures

We further provide clear insight into the differences between our MIP and existing countermeasures (Xiao et al., 2020; Zhang
t al., 2021).

• Difference in focus. As explained in Section 2.3.3, our paper primarily focuses on efficiency, which is a practical requirement for
deploying privacy protection systems in real-world scenarios. In contrast, existing countermeasures only consider the success
rate of privacy preservation.

• Difference in the application context. We observe that existing countermeasures solely concentrate on specific contexts, such
as hamming learning. In contrast, our method explores a broader and more representative scenario in the retrieval field,
specifically deep metric learning (DML). Unlike binary code limitations in hamming learning, DML encompasses features of
richer dimensions, making it applicable to a wider range of real-world applications.

• Difference in the evaluation. Unlike existing countermeasures that are evaluated using only a single metric (i.e., mAP) and a
single device, our work performed separate efficiency experiments on both PC and mobile phones. Furthermore, we utilized
four evaluation metrics (i.e., Recall, NMI, F1, and mAP) to assess the effectiveness of our method comprehensively.

.3. Best obtained results

Based on the conducted experiments, we list several consistently observed findings.

• MIP shows a high PSR in corrupting retrieval results while maintaining reasonable reductions in normal performance.
Additionally, MIP is compatible with various backdoor trigger injection methods, which makes it easy to update and use in
practical applications. This compatibility serves as strong evidence for the effectiveness of our proposed methods in protecting
privacy.

• Our method is able to effectively insert a visually imperceptible benign backdoor into a private image, which can prevent
private content from being detected by adversaries.

• Both 𝐿𝑑 and 𝐿𝑝 loss terms are crucial for PBL to achieve high PSR. By adjusting their weights in the privacy-sensitive loss,
they can be tailored to meet the requirements of personalized real-world applications for both users and service providers.

• A reasonable poisoning ratio is crucial for MIP to strike a balance between privacy protection and normal retrieval. If the
poisoning ratio is too high, it can significantly degrade the system’s overall performance, while a too-low ratio may not provide
adequate privacy protection.

• Our backdoor method can generate an imperceptible poisoned image that effectively corrupts retrieval results while causing
low visual damage to the original image.

• The backdoor triggers generated by our MIP are based on the pre-training image steganography encoder, which is naturally
robust against noise attacks and suitable for backdoor injection. As a result, existing input filtering-based defenses are
inadequate to mitigate such trigger-agnostic backdoor methods in the field context.

• Even if the adversary has full access to the model, our approach still demonstrates some degree of robustness against the
typical pruning-based defense, enabling it to remain effective in more challenging scenarios.

.4. Limitations and future work

While our work showed very good performance, we believe there are also some limitations concerning MIP.

• Our work employs the pre-training StegaStamp as our invisible trigger injection module. In fact, alternative backdoor attack
methods, such as WaNet (Nguyen & Tran, 2021), can generate imperceptible backdoors. Still, we do not consider this a
significant limitation because our MIP primarily focuses on learning the specific backdoor trigger during model training. Thus,
choosing StegaStamp is without loss of generality.

• In addition, our method represents a significant advancement towards a practical privacy countermeasure based on. Never-
theless, we acknowledge that in the absence of a supervisory entity, there is still a possibility for service providers (SPs) to
claim privacy protection for their users while potentially engaging in unauthorized data access. Hence, as part of our future
work, we plan to explore an extended scheme that involves the presence of a trusted third-party supervisory entity to ensure
the integrity and transparency of the privacy protection process.

. Conclusion

This work focuses on preventing image privacy violations in front of malicious searches on image retrieval systems. It starts with
bservations that existing privacy-preserving approaches for mitigating malicious searches are computation-infeasible to deploy on
ypical lightweight mobile devices (e.g., smartphones). To bridge the gap, we take a step towards a practical privacy countermeasure
nd point out that a model-centric method based on backdoor learning can yield better efficiency as a general solution. Imperceptible
oss and privacy-sensitive losses are developed and integrated for injecting backdoors into the DML-based retrieval model. Extensive
xperiments were conducted, which verified the proposed methods’ privacy-preserving effectiveness, efficiency, stealthiness, and
obustness, even under advanced attacks of deliberate backdoor defenses.
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